Fast and Provably Good Seedings for k-Means
نویسندگان
چکیده
Seeding – the task of finding initial cluster centers – is critical in obtaining highquality clusterings for k-Means. However, k-means++ seeding, the state of the art algorithm, does not scale well to massive datasets as it is inherently sequential and requires k full passes through the data. It was recently shown that Markov chain Monte Carlo sampling can be used to efficiently approximate the seeding step of k-means++. However, this result requires assumptions on the data generating distribution. We propose a simple yet fast seeding algorithm that produces provably good clusterings even without assumptions on the data. Our analysis shows that the algorithm allows for a favourable trade-off between solution quality and computational cost, speeding up k-means++ seeding by up to several orders of magnitude. We validate our theoretical results in extensive experiments on a variety of real-world data sets.
منابع مشابه
Distributed and Provably Good Seedings for k-Means in Constant Rounds
The k-means++ algorithm is the state of the art algorithm to solve k-Means clustering problems as the computed clusterings are O(log k) competitive in expectation. However, its seeding step requires k inherently sequential passes through the full data set making it hard to scale to massive data sets. The standard remedy is to use the k-means‖ algorithm which reduces the number of sequential rou...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملRandomized Dimensionality Reduction for k-Means Clustering
We study the topic of dimensionality reduction for k-means clustering. Dimensionality reduction encompasses the union of two approaches: 1) feature selection and 2) feature extraction. A feature selection-based algorithm for k-means clustering selects a small subset of the input features and then applies k-means clustering on the selected features. A feature extraction-based algorithm for k-mea...
متن کاملK-MC: Approximate K-Means++ in Sublinear Time
The quality of K-Means clustering is extremely sensitive to proper initialization. The classic remedy is to apply k-means++ to obtain an initial set of centers that is provably competitive with the optimal solution. Unfortunately, k-means++ requires k full passes over the data which limits its applicability to massive datasets. We address this problem by proposing a simple and efficient seeding...
متن کاملApproximate K-Means++ in Sublinear Time
The quality of K-Means clustering is extremely sensitive to proper initialization. The classic remedy is to apply k-means++ to obtain an initial set of centers that is provably competitive with the optimal solution. Unfortunately, k-means++ requires k full passes over the data which limits its applicability to massive datasets. We address this problem by proposing a simple and efficient seeding...
متن کامل